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Abstract—This paper presents a constructive Takagi-Sugeno
fuzzy modeling method for a general class of nonlinear systems.
This method is particularly suitable for stability analysis based
on piecewise quadratic Lyapunov functions. The modeling
error is appropriately inserted into the model and an algorithm
is proposed to automatically determine the model parameters
to keep the modeling error smaller than a desired upper bound.
Based on the constructed fuzzy model, exponential stability
analysis is performed and the stability constraints are
transformed into linear matrix inequalities. Modeling error is
also included in the stability analysis to validate the results for
the original nonlinear system. The way to utilize the modeling
method and stability analysis to systematically find a Lyapunov
function for a nonlinear system is demonstrated via an example
and the potential capability of the method in estimating the
domain of attraction is discussed.

I. INTRODUCTION

TABILITY analysis of nonlinear systems, due to the
behavioral variety of these systems and theoretical
complicacy of the analysis methods, is still a challenging

area in the control systems engineering. Direct and indirect
Lyapunov stability theorems, [1], are supposed to be the
only powerful analytical tools for stability analysis of the
equilibria of a nonlinear system. Although the indirect
Lyapunov theorem, together with the centre manifold
theorem, can establish the stability/instability of the
nonlinear system based on the stability/instability of its
linearized version, this analysis is local and unable to
investigate global stability or give an estimate of the Domain
of Attraction (DOA). In order to analyze global stability or
analytically estimate the DOA, we need to use the direct
Lyapunov stability and consequently find a Lyapunov
function. However, finding a Lyapunov function for a given
nonlinear system is usually a very difficult task and is
actually the main problem in stability analysis of a nonlinear
system.

So far, lots of attempts have been made to develop a
systematic method to find a Lyapunov function for a general
class of nonlinear systems. Stability analysis based on
Takagi-Sugeno (TS) fuzzy model of the nonlinear system is
one of the approaches proposed in the early 1990s to achieve
this objective, [2]. In this approach of stability analysis, the
nonlinear system is first replaced by its TS fuzzy model.
Then the stability analysis is performed based on quadratic,
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piecewise quadratic, or fuzzy Lyapunov functions and the
stability constraints are transformed into Linear Matrix
Inequalities (LMIs). The Lyapunov function is then
automatically obtained by solving the LMIs via currently
available powerful software. However, lots of the results
obtained so far have disregarded the modeling error between
the original nonlinear system and its TS fuzzy model, [3],
[4], and consequently suffer from an important theoretical
deficiency.

In this paper, we propose a constructive fuzzy modeling
method based on triangular Fuzzy Basic Functions (FBFs)
which is very suitable for stability analysis using continuous
piecewise quadratic Lyapunov functions. Similar to the
structure introduced in [5], we insert the modeling error in
the TS model as vanishing perturbation and present an
algorithm to automatically determine the parameters of the
TS model to satisfy a predefined modeling precision. Using
the final TS model and previously satisfied bounds on the
modeling error, we perform the exponential stability analysis
based on continuous piecewise quadratic Lyapunov function
and derive the stability constraints in the form of LMIs.
These stability constraints are valid for the original
nonlinear system, because they properly include the effects
of modeling error. Finally, using a clarifying example, we
show how to utilize the proposed modeling method and
stability analysis to systematically find the Lyapunov
function of a relatively complicated nonlinear system and
introduce the potential capability of this method in
estimating the DOA of an equilibrium point of the nonlinear
system.

II. FUZZY MODELLING

Consider the nonlinear system
xxAx )(�� (1)

where nRx � is the state vector. Using a TS fuzzy system,
in this section we try to systematically approximate (model)
the nonlinear system (1) in a way that the approximation
(modeling) error satisfies a predefined upper bound.

The lth fuzzy rule in a TS fuzzy system can be written as

1 1 2 2 ln: IF is and is and is

THEN , 1, 2, ,
l l l n

l

R x H x H x H

x A x l L� �

�

� �
(2)

where ljH is a fuzzy set, L is the number of fuzzy rules, and

lA is the state matrix. Based on some conventional

assumptions described in section ��.A, the output of the TS
fuzzy system can be written as

Fuzzy Modelling of Nonlinear Systems for Stability Analysis Based
on Piecewise Quadratic Lyapunov Functions

Farshad Shirani, Babak Nadjar Araabi, and Mohammad Javad Yazdanpanah

S

2230

978-1-4244-1819-0/08/$25.00 c©2008 IEEE



�
�

�
L

l
ll xAxx

1

)(�� (3)

where )(xl� is the weight of the lth subsystem and
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In order to describe the modeling method, we first recall the
structure of a Multi Input-Single Output (MISO) fuzzy
system and the concept of FBFs from [6].

A. MISO Fuzzy Systems and FBFse

Consider a fuzzy system VU �:� , where
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	 is the input space and RV 
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the output space. Suppose the fuzzy system consists of
fuzzifier, fuzzy rule base, inference engine, and defuzzifier.
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where ),,2,1( njx j �� are input variables and y is the

output. The fuzzy sets j
j

i UH
j

 and VC 


n21 iii �
are

linguistic terms which are described by the membership

functions )( j
j

i xH
j

and )(
n21 iii yC

�
, respectively.

According to [6] and under the four main assumptions that:
the fuzzifier is a singleton fuzzifier, the T-norm in fuzzy
implication and inference is algebraic product, the
defuzzifier is a centre of average defuzzifier, and

n21 iii �
C is

a normal fuzzy set, the output of the fuzzy system is
formulized as
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where � 
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indexes of fuzzy rules and
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FBFs which are decomposed to the FBFs )( j
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In this paper, we choose the membership functions ( )
j

j
jiH x

to be triangular functions and parameterize them such that
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Therefore the membership functions take the shape shown in

Fig. 1, and according to (8) they are equal to FBFs )( j
j

i xQ
j

,

i.e. ( ) ( ), 1, 2, ,
j j

j j
j ji iQ x H x j n� � � .

These triangular FBFs partition the input (state) space into
hypercubic cells jS , as shown in Fig. 2 for 2-dimensional

space. It can be seen in section ��� that this partitioning
property is very useful for stability analysis based on
piecewise quadratic Lyapunov functions.

B. TS Fuzzy Modeling Based on Triangular FBFs

Consider the TS fuzzy system (3) with the fuzzy rules (2).
We can rewrite the fuzzy rules (2) as
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Comparing (9) with the MISO system rules (5), we see that
each lR in (9) or (2) corresponds to one rule

n21 iii �
R in (5).

The only deference is that the consequent of the TS fuzzy
rules is a dynamical system, rather than a single variable in
the MISO fuzzy rules (5). In this section we show how to
use the MISO system (6) to obtain the TS fuzzy
approximation (3) of the nonlinear system (1). The main
idea is to separately approximate each entry of the matrix
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Fig. 2. Partitioning the state space by triangular FBFs.
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Fig. 1. Triangular membership functions related to the input (state)
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)(xA with a single MISO fuzzy system, but with the same

FBFs for all entries. Choosing the same FBFs for all entries,
makes it possible to combine all separate approximation into
a compact form and obtain the TS fuzzy model. The weight

)(xl� of each subsystem in (3) is then equal to an FBF as

following

nniiil iiilIiiixQx
n

��
� 2121 ;),()(

21
����� (10)

and according to (7) and (8), the property (4) will also hold
for the weights )(xl� . In the sequel we describe further

details of implementing the abovementioned idea.
As we showed in section 2.1, the triangular FBFs partition

the state space in a domain � � � � 111 0,, 	�		� nnn babaD �

into cells jS . Each vertex of a cell is the centre of one of the

neighbour FBFs. In a cell jS , we can represent the nonlinear

system (1) as

JjSxxxAxxxAx j
j

A
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(11)

where )(xj
A� is a perturbation term containing the

modelling error, and )( jI is the set of all indexes of

subsystems which are active in the cell jS . J is a set

containing the indexes of all cells. The error term is
calculated as following
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The main objective of the modelling procedure is to
determine the model parameters, i.e. matrices lA and centres

and number of membership functions, to satisfy the
following precision constraint in all cells

( )

sup ( ) ( ) ,
j

i A
pq i pq pq

x S i I j

a x x a j J� �
� �

� � �� (13)

where )(xapq , i
pqa , A

pq� are the pqth entry of the matrices

)(xA , A, and A� , respectively. A� is the predefined

desired precision matrix. We can write (13) in the following
more compact form

( ) , ,j
A jA x x S j J� � � �� (14)

where )(xj
A� is a matrix containing the absolute value of

the entries of matrix )(xj
A� and the matrix inequality

Y Z� means that each entry of Y is smaller than or equal to

its corresponding entry in Z.
We choose ( )i iA A c� , where ic is the centre of the

weight ( )i x� . So, the TS fuzzy model is exact at the centre

of weights, i.e. ( ) 0, ( ),j
iA c i I j j J� � � � . Based on this

way of evaluating matrices iA , we propose an algorithm to

automatically determine the centre of membership functions
to satisfy the precision constraint (14). Before describing the
algorithm, we need to first define the following vectors
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The vector ( )g x contains all the entries of matrix ( )A x .

Each element of this vector is a scalar nonlinear MISO
function which we are going to approximate by a MISO
fuzzy system (6). Each element of the vector ( )j x� is the

fuzzy approximate of its corresponding element in vector
( )g x inside the cell jS . The vector ( )je x is the normalized

modelling error in the cell jS and the vector division

operator in (15) means an element by element division. The
precision constraint (14) is then written as

sup ( ) 1,
j

j
x S

e x j J
�

� �� (16)

where ( )je x is a vector containing the absolute value of the

elements of vector ( )je x .

Algorithm: Given the precision matrix A� and the

maximum number of cells N:
Step 1: Initialize the centre of membership functions to

partition the state space in domain D into quadrants. In other
words, divide each dimension of state space into two
intervals ,0ia� �� � and 0, ib� �� � . The initial structure of

membership functions and partitioning of domain D is
shown in Fig. 3. This initial partitioning ensures that the
centre of one of the weights ( )i x� is placed on origin, and

so the model is exact at origin.
Step 2: Compute the normalized error vector for all

existing cells based on (15). If the constraint (16) is satisfied
for all cells, terminate the algorithm, otherwise store in an

array Ĵ the indexes of all cells in which the constraint (16)
is not satisfied. For example, supposing that in Fig. 4 the
constraint (16) is not satisfied in the shaded cells, we have

� 
ˆ 3,4J � .

Step 3: In each dimension, bisect the partitioning intervals

whose bisection causes bisecting the cells ˆ,jS j J� . For

example, in the first dimension ( 1x ) in Fig. 4 we need to

bisect both intervals � �1,0a and � �10,b , which is shown by

dotted lines. In other hand, in the second dimension ( 2x ) we

need to only bisect the interval � �20,b which is shown by

dashed line in Fig. 4.
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Step 4: For each dimension, supposing that the intervals
are bisected through the way described in step 3, compute
the normalized error of the new half-cells, 1je and 2je , and

store them in a vector array as

� 
1 2
ˆ, , , 1, 2, ,i i

i j je e j J i n� � �e �

Note that there is equal number of vectors in the array ie of

all dimensions.
Step 5: For each dimension, compute the number of all

added cells iv which are generated in the bisecting

procedure in step 4, e.g. in Fig. 4 we have 1 4v �

and 2 2v � .

Step 6: Based on the following criteria, choose the
bisections in one dimension, construct the new cells, and
compute the new centres of membership functions and
matrices iA :

1) Check if all the vectors in the array e of each
dimension satisfy the constraint (16). If (16) is
satisfied for the array e of only one dimension,
choose the bisections in that dimension and
proceed to step 7, else if it is satisfied in several
dimensions, keep the array e of those dimensions
and drop the array of others, i.e. drop other

dimensions from the existing options.
2) Among the remaining dimensions, If only one

dimension has the smallest iv , choose the

bisections in that dimension and proceed to step 7,
else if several dimensions have the smallest iv ,

keep the array e of those dimensions and drop the
array of others.

3) Among the remaining dimensions, choose the
bisections in the dimension which has the smallest
some of square errors as

2 2

1 2
2 2ˆ

SSE i i
i j j

j J

e e
�

� �� � !
" #

�
Step 7: If the number of existing cells is smaller than or

equal to N, go back to step 2, otherwise terminate the
algorithm with the note that using the proposed algorithm, it
is impossible to satisfy the constraint (16) in all cells with
fewer number of cells than N.

The above algorithm automatically determines the
parameters of the fuzzy model (11) to satisfy the modelling
precision (14). It should be noted that it is very likely that at
the end of the algorithm, the suprimum of modelling error in
some cells is much smaller than the desired upper bound. So
it is recommended to compute the suprimum error matrix

j
A� of each cell at the end of the algorithm and use it in the

consequent stability analysis procedure, instead of using the
same precision matrix A� for all cells. Therefore, the

modelling error terms in (11) finally satisfies the following
precision constraint in each cell

( ) ,j j
A Ax j J� � �� (17)

It can be easily seen that if (17) holds, the following
inequalities also hold with Frobenius, infinity, and 1 norms

( ) , , ,1j j
A Ap p

x p F� � � � $

According to norm equivalencies in finite dimensional
spaces, e.g. found in [7], we can easily write the following
inequality for the modelling error terms

% &
� 


2 2 22
2 22

1

( ) ( ) ( )

, min , ,

Tj j j
jA A A

j j j
j A A AF

x x x x x

n n

� � '

'
$

� � �
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(18)

The inequality (18) is used in stability analysis to enter the
effect of modelling error into the stability constraints.

III. STABILITY ANALYSIS

We can rewrite the fuzzy model (11) as

( )

( ) ( ) , ;i
i i A j

i I j

x x A x x u x S j J� �
�

� � � ���
(19)

Where

0 ( )
, , ( )

1 0 0 0

j
i j A

i A

x A x
x A x

�
�

� �� � � �
� � � ( )( ) ( )

( )� � � � � �
(20)

Consider the following piecewise quadratic candidate of

1S 2S

4S3S

1x

2x

1a

2a

1b

2b

0

Fig. 4. Initial partitioning of modeling domain D by initial
membership functions.
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0

Fig. 3. Initial partitioning of modeling domain D by initial
membership functions.
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Lyapunov function

0
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, ,
( )

, ,

T
j j

T
j j

x P x x S j J
V x

x P x x S j J
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� ,

� �+-
(21)

where 0J J. is the set of indexes of cells which contain

the origin and 1J J
 is the set of indexes of other cells.

The symmetric matrixes jP and jP are parameterized as

follows to preserve the continuity of the Lyapunov function
(21) at the boundary of cells, [8]

0

1

,

,

T
j j j

T
j j j

P F TF j J

P F TF j J

* � �+
,

� �+-
where T is an unknown symmetric matrix and the constraint
matrices jF and jF are systematically determined from the

information of the fuzzy model via the method described in
[8]. The following theorem gives the sufficient conditions
for exponential stability of the origin of the nonlinear system
(1).

Theorem: The origin of the nonlinear system (1) which is
represented by the fuzzy model (11), in which the error
terms satisfy the constraint (18), is exponentially stable if a
positive constant / and symmetric matrices T, jU , and jW

can be found such that all the entries of the matrices jU and

jW are non-negative and the LMIs

0T
j j j jP E U E� 0 (22)

2

0
T T
i j j i j j j j j

j

A P P A E W E I P

P I

/'

/

� �� � �
( ) 1

�( )� �
(23)

hold for ( )i I j� , 0j J� and the LMIs

0T
j j j jP E U E� 0 (24)

2

0
T T
i j j i j j j j j

j

A P P A E W E I P

P I

/'

/

� �� � �
( ) 1

�( )� �
(25)

hold for ( )i I j� , 1j J� . The constraint matrixes jE and

jE are defined to provide the ability to apply the

S-procedure method , [9], and are systematically determined
via the method described in [8].

Proof: The proof follows the similar steps as in [8], with
some modifications to include the modelling error effects. It
can be easily shown (see [8]) that the LMIs (22) and (24)

ensure that
2 2

1 22 2
( )c x V x c x� � 1 20, 0c c0 0 , which is

the first constraint of exponential stability theorem , [1].
Here we show that the LMIs (23) and (25) imply the
satisfaction of the second constraint of exponential stability

theorem, i.e.
2

3 32
( ) , 0V x c x c� 0� .

If we compute the derivative of the Lypunov function
along the trajectories of the system (19), we have

% &
( )

( ) ( ) ( ) ( )T T T T
i i j j i j j j j

i I j

V x x x A P P A x x P x x P x� � �
�

� � � ���

It can be easily shown that the following inequality holds
with an arbitrary positive constant /

21
( ) ( ) ( ) ( )T T T T

j j j j j j jx P x x P x x P x x x� � /� �
/
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According to the definition (20) and based on the above
inequality and the constraint (18), we can easily write

22 2
2

1
( ) ( )T T T

j j j j j jx P x x P x x P x x� � /'
/
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Therefore we have
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Now it is sufficient to have

2 21
0, ( ),T

i j j i j jA P P A I P i I j j J/'
/

� � � 1 � �

Adding the S-procedure term T
j j jE W E to the above

inequality (see [8]) and applying the Schur complement, [9],
we obtain the LMIs (25). The LMIs (24) are obtained
through the same method, so the proof is completed. �

In the next section we provide an example to clearly show
the way to utilize the proposed modelling method and
stability analysis to systematically find a Lyapunov function
for a general class of nonlinear systems.

IV. EXAMPLE

Consider the nonlinear system

1 1 2 1 2 1

2 2 2 1 2

sin( ) 2 sin( )cos( )

cos( ) sin( ) 2

x x x x x x

x x x x x

�� � � � � �
�( ) ( ) ( )�� � � � � �

�

�
(26)

Choosing the following precision matrix, we try to model
the nonlinear system (26) in the modeling domain

� � � �/ 2, / 2 / 2, / 2D 2 2 2 2� � 	 �

0.2 0.2

0.2 0.2A
� �

� � ( )
� �

If we apply the algorithm proposed in section 2 to the
nonlinear system (26), each dimension of state space is split
into four intervals and the state space in domain D is
partitioned into 16 cells. As an example, the nonlinear
function 12 ( )a x , its fuzzy approximate and the modeling

error is shown in Fig. 5.
Now based on the obtained fuzzy model, we can easily

compute the matrices jF , jE , and j
A� for each cell and

solve the LMIs (22)–(25). Solving the LMIs with the
available powerful toolbox in MATLAB, we systematically
obtain the Lyapunov function shown in Fig. 6.

In order to show the potential capability of the presented
fuzzy-model-based stability analysis method in estimating
the DOA, we draw the contours of the Lyapunov function in

the modeling domain D, in which we ensure ( )V x� is

negative definite.
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As we see in Fig. 7, the Lyapunov function takes the
maximum value equal to 7.95 inside the domain D. So,
according to the method described in (Khalil, 2002) and as
shown in Fig. 7, we can propose a conservative estimate of
DOA as

� 
| ( ) 7.95x D V x3 � � �

V. CONCLUSION

In this paper we presented a constructive method for
fuzzy modelling nonlinear systems which is very suitable for
systematic stability analysis based on piecewise quadratic
Lyapunov functions. We also showed the potential
capability of the stability analysis method in estimating the
DOA. The authors are currently further developing the
proposed method to obtain an efficient and systematic DOA
estimation method which is applicable to a general class of
nonlinear systems.
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